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Abstract 

Much of the world’s data is streaming, time-series data, where 
anomalies give significant information in critical situations; 
examples abound in domains such as finance, IT, security, medical, 
and energy. Yet detecting anomalies in streaming data is a difficult 
task, requiring detectors to process data in real-time, not batches, and 
learn while simultaneously making predictions. There are no 
benchmarks to adequately test and score the efficacy of real-time 
anomaly detectors. Here we propose the Numenta Anomaly 
Benchmark (NAB), which attempts to provide a controlled and 
repeatable environment of open-source tools to test and measure 
anomaly detection algorithms on streaming data. The perfect detector 
would detect all anomalies as soon as possible, trigger no false 
alarms, work with real-world time-series data across a variety of 
domains, and automatically adapt to changing statistics. Rewarding 
these characteristics is formalized in NAB, using a scoring algorithm 
designed for streaming data. NAB evaluates detectors on a 
benchmark dataset with labeled, real-world time-series data. We 
present these components, and give results and analyses for several 
open source, commercially-used algorithms. The goal for NAB is to 
provide a standard, open source framework with which the research 
community can compare and evaluate different algorithms for 
detecting anomalies in streaming data. 

Keywords—anomaly detection; time-series data; benchmarks; 
streaming data 

I. INTRODUCTION 
With the rapid rise in real-time data sources the detection of 

anomalies in streaming data is becoming increasingly 
important. Use cases such as preventative maintenance, fraud 
prevention, fault detection, and monitoring can be found 
throughout numerous industries such as finance, IT, security, 
medical, energy, e-commerce, and social media. Anomaly 
detection is notoriously difficult to benchmark and compare [1, 
2]. In addition, real-time applications impose their own unique 
constraints and challenges that must be considered. The goal  
of this paper is to introduce the Numenta Anomaly Benchmark 
(NAB), a rigorous new benchmark and source code for 
evaluating real-time anomaly detection algorithms. 

Anomaly detection in real-world streaming applications is 
challenging. The detector must process data and output a 
decision in real-time, rather than making many passes through 
batches of files. In most scenarios the number of sensor 
streams is large and there is little opportunity for human, let 
alone expert, intervention. As such, operating in an 
unsupervised, automated fashion (e.g. without manual 
parameter tweaking) is often a necessity. As part of this 

automation, the detectors should continue to learn and adapt to 
changing statistics while simultaneously making predictions.  
The real goal is often prevention, rather than detection, so it is 
desirable to detect anomalies as early as possible, giving 
actionable information ideally well before a catastophic failure. 

Benchmarks designed for static datasets do not adequately 
capture the requirements of real-time applications. For 
example, scoring with standard classification metrics such as 
precision and recall do not suffice because they fail to reflect 
the value of early detection. An artificial separation into 
training and test sets does not properly capture a streaming 
scenario nor does it properly evaluate a continuously learning 
algorithm. The NAB methodology and scoring rules (described 
below) are designed with such criteria in mind. Through 
experience with customers and researchers we also discovered 
it would be beneficial for the industry to include real-world 
labeled data from multiple domains. Such data is rare and 
valuable, and NAB attempts to incorporate such a dataset as 
part of the benchmark. There exist two other time-series data 
corpuses intended for real-time anomaly detection: the UC-
Irvine dataset [3] and a recently released dataset from Yahoo 
Labs [4]. Neither of these include a scoring system but their 
data could eventually be incorporated into NAB. 

NAB attempts to provide a controlled and repeatable 
environment of tools to test and measure different anomaly 
detection algorithms on streaming data.  We include in this 
paper an initial evaluation of four different real-time 
algorithms. At Numenta we have developed an anomaly 
detection algorithm based on Hierarchical Temporal Memory 
(HTM). HTM is a continuous learning system derived from 
theory of the neocortex [5] and is well suited for real-time 
applications. The algorithm has proven useful in applications 
such as monitoring server data, geospatial tracking, stock 
trading metrics, and social media [6]. We also include 
comparative results with open source anomaly detection 
algorithms from Etsy Skyline [7], a popular open source 
algorithm, and two from Twitter [8]. There are, of course, 
many algorithms we have not directly tested [2, 9-14].  It is our 
hope that eventually a wide assortment of algorithms will be 
independently evaluated and results reported in a manner that 
is objectively comparable. 

In the next section we discuss the two main components of 
NAB: the scoring system and dataset. We then discuss and 
analyze NAB scoring results for the above algorithms. 



II. NUMENTA ANOMALY BENCHMARK 
NAB aims to represent the variety of anomalous data and 

the associated challenges detectors face in real-world streaming 
applications. We define anomalies in a data stream to be 
patterns that do not conform to past patterns of behavior for the 
stream. This definition encompasses both point anomalies (or 
spatial anomalies) as well as temporal anomalies.  For 
example, a spiking point anomaly occurs when a single data 
point extends well above or below the expected range. 
Streaming data commonly also contains temporal anomalies, 
such as a change in the frequency, sudden erratic behavior of a 
metric, or other temporal deviations. Anomalies are defined 
with respect to past behavior. This means a new behavior can 
be anomalous at first but ceases to be anomalous if it persists; 
i.e. a new normal pattern is established. Fig. 1 shows a few 
representative anomalies taken from the NAB dataset. 

In the next two sections we discuss both the NAB dataset 
and scoring system, and the qualities that make them ideal for 
evaluating real-world anomaly detection algorithms. 

A. Benchmark Dataset 
In the current version of NAB we focus on time-series data 

where each row contains a time stamp plus a single scalar 
value. The requirements are then to (i) include all types of 
streaming data anomalies, (ii) include a variety of data metrics, 
and (iii) present common challenges such as noise and 
establishing new normal patterns. 

Anomalous patterns differ significantly across applications. 
A one-second latency in periodic EKG data could be a 
significant fluctuation, but the same pattern in stock trading 
volume may be meaningless. It is thus important for the NAB 
dataset to include metrics across a variety of domains and 
applications.   The data currently in the NAB corpus represents 
a variety of metrics ranging from IT metrics such as network 
utilization to sensors on industrial machines to social media 
chatter. We also include some artificially-generated data files 
that test anomalous behaviors not yet represented in the 
corpus’s real data, as well as several data files without any 
anomalies. The current NAB dataset contains 58 data files, 
each with 1000-22,000 data instances, for a total of 365,551 
data points. 

The NAB dataset is labeled by hand, following a 
meticulous, documented procedure. Labelers must adhere to a 
set of rules when inspecting data files for anomalies, and a 
label-combining algorithm formalizes agreement into ground 
truth labels. The process is designed to mitigate human error as 
much as possible. 1  In addition a smooth scoring function 
(described below) ensures that small labeling errors will not 
cause large changes in reported scores. 

It is often prohibitively expensive to collect an accurately 
labeled set of anomalous data instances that covers all types of 
anomalous behavior [2]. A key element of the NAB dataset is 
the inclusion of real-world data with anomalies for which we 
know the causes.  We propose the NAB dataset as a quality 
collection of time-series data with labeled anomalies, and that 

                                                             
1 The full labeling process and rules can be found in the NAB wiki, along 
with the label-combining source code, in the NAB repo [15]. 

it is well suited to be a standard benchmark for streaming 
applications.  

 
 

 
Fig. 1. Two representative examples of real data streams from the NAB 
dataset. Anomalies are labeled with red circles. The first anomaly in the top 
figure is subtle and challenging. The spiking behavior does not return to the 
baseline as expected, and this is soon the new normal pattern. The second 
anomaly is a simple spike anomaly after which the system returns to previous 
patterns. The third anomaly identifies a long period inconcsitent with the 
normal spiking pattern. The bottom figure shows temperature sensor data 
from an internal component of a large, expensive, industrial machine. The 
first anomaly was a planned shutdown. The third anomaly is a catastrophic 
system failure. The second anomaly, a subtle but observable change in the 
behavior, indicated the actual onset of the problem that led to the eventual 
system failure. 

B. Scoring Real-Time Anomaly Detectors 
In NAB an anomaly detector accepts data input and outputs 

instances which it deems to be anomalous. The NAB scoring 
system formalizes a set of rules to determine the overall quality 
of anomaly detection. We define the requirements of the ideal, 
real-world anomaly detector as follows: 

i. detects all anomalies present in the streaming data 
ii. detects anomalies as soon as possible, ideally before 

the anomaly becomes visible to a human 
iii. triggers no false alarms (no false positives) 
iv. works with real time data (no look ahead) 



v. is fully automated across all datasets (any data 
specific parameter tuning must be done online without human 
intervention) 

The NAB scoring algorithm aims to reward these 
characteristics. There are three key aspects of scoring in NAB: 
anomaly windows, the scoring function, and application 
profiles. These are described in more detail below. 

Traditional scoring methods, such as precision and recall, 
don’t suffice because they don’t effectively test anomaly 
detection algorithms for real-time use. For example, they do 
not incorporate time and do not reward early detection. 
Therefore, the standard classification metrics – true positive 
(TP), false positive (FP), true negative (TN), and false negative 
(FN) are not applicable for evaluating algorithms for the above 
requirements.  

 
Fig. 2. Shaded red regions represent the anomaly windows for this data file. 
The shaded purple region is the first 15% of the data file, representing the 
probationary period. During this period the detector is allowed to learn the 
data patterns without being tested. 

To promote early detection NAB defines anomaly 
windows. Each window represents a range of data points that is 
centered around a ground truth anomaly label. Fig. 2 shows an 
example using the data from Fig 1. A scoring function 
(described in more detail below) uses these windows to 
identify and weight true positives, false positives, and false 
negatives. If there are multiple detections within a window, the 
earliest detection is given credit and counted as a true positive. 
Additional positive detections within the window are ignored. 
The sigmoidal scoring function gives higher positive scores to 
true positive detections earlier in a window and negative scores 
to detections outside the window (i.e. the false positives). 
These properties are illustrated in Fig. 3 with an example. 

How large should the windows be? The earlier a detector 
can reliably identify anomalies the better, implying these 
windows should be as large as possible. The tradeoff with 
extremely large windows is that random or unreliable 
detections would be regularly reinforced. Using the underlying 
assumption that true anomalies are rare, we define anomaly 
window length to be 10% the length of a data file, divided by 
the number of anomalies in the given file. This technique 
allows us to provide a generous window for early detections 
and also allow the detector to get partial credit if detections are 

soon after the ground truth anomaly. 10% is a convenient 
number but note the exact number is not critical. We tested a 
range of window sizes (between 5% and 20%) and found that, 
partly due to the scaled scoring function, the end score was not 
sensitive to this percentage.  

Different applications may place different emphases as to 
the relative importance of true positives vs. false negatives and 
false positives. For example, the graph in Fig. 2 represents an 
expensive industrial machine that one may find in a 
manufacturing plant. A false negative leading to machine 
failure in a factory can lead to production outages and be 
extremely expensive. A false positive on the other hand might 
require a technician to inspect the data more closely. As such 
the cost of a false negative is far higher than the cost of a false 
positive. Alternatively, an application monitoring the statuses 
of individual servers in a datacenter might be sensitive to the 
number of false positives and be fine with the occasional 
missed anomaly since most server clusters are relatively fault 
tolerant.  

To gauge how algorithms operate within these different 
application scenarios, NAB introduces the notion of 
application profiles. For TPs, FPs, FNs, and TNs, NAB applies 
different relative weights associated with each profile to obtain 
a separate score per profile.  

 
Fig. 3. Scoring example for a sample anomaly window, where the values 
represent the scaled sigmoid function, the second term in Eq. (1). The first 
point is an FP preceding the anomaly window (red dashed lines) and 
contributes -1.0 to the score. Within the window we see two detections, and 
only count the earliest TP for the score. There are two FPs after the window. 
The first is less detrimental because it is close to the window, and the second 
yields -1.0 because it’s too far after the window to be associated with the true 
anomaly. TNs make no score contributions. The scaled sigmoid values are 
multiplied by the relevant application profile weight, as shown in Eq. (1), the 
NAB score for this example would calculate as: −1.0𝐴!" + 0.9999𝐴!" −
0.8093𝐴!" − 1.0𝐴!" . With the standard application profile this would result 
in a total score of 0.6909. 

NAB includes three different application profiles: standard, 
reward low FPs, and reward low FNs. The standard profile 
assigns TPs, FPs, and FNs with relative weights (tied to the 
window size) such that random detections made 10% of the 



time would get a zero final score on average. The latter two 
profiles accredit greater penalties for FPs and FNs, 
respectively. These two profiles are somewhat arbitrary but 
designed to be illustrative of algorithm behavior. The NAB 
codebase itself is designed such that the user can easily tweak 
the relative weights and re-score all algorithms. The 
application profiles thus help evaluate the sensitivity of 
detectors to specific applications criteria. 

The combination of anomaly windows, a smooth temporal 
scoring function (details in the next section), and the 
introduction of application profiles allows researchers to 
evaluate online anomaly detector implementations against the 
requirements of the ideal detector. Specifically the overall 
NAB scoring system evaluates real-time performance, prefers 
earlier detection of anomalies, penalizes “spam” (i.e. FPs), and 
provides realistic costs for the standard classification 
evaluation metrics TP, FP, TN, and FN. 

C. Computing NAB Score: Details 
The final NAB score for a given algorithm and a given 

application profile is computed as follows. Let 𝐴  be the 
application profile under consideration, with 
𝐴!" ,𝐴!" ,𝐴!" ,𝐴!"  the corresponding weights for true 
positives, false positives, etc.  These weights are bounded 
0 ≤ 𝐴!" ,𝐴!" ≤ 1 and −1 ≤ 𝐴!" ,𝐴!" ≤ 0. Let 𝐷  be the set 
of data files and let 𝑌! be the set of data instances detected as 
anomalies for datafile 𝑑 . (As discussed earlier, we remove 
redundant detections: if an algorithm produces multiple 
detections within the anomaly window, we retain only the 
earliest one.) The number of windows with zero detections in 
this data file is the number of false negatives, represented by 
𝑓!.  

The following scaled sigmoidal scoring function defines 
the weight of individual detections given an anomaly window 
and the relative position of each detection: 

𝜎! 𝑦 = 𝐴!" − 𝐴!"
1

1 + 𝑒!!
− 1 (1)	

In Eq. (1), 𝑦 is the relative position of the detection within the 
anomaly window. The parameters of Eq. (1) are set such that 
the right end of the window evaluates to 𝜎 𝑦 = 0.0 = 0 (see 
Fig. 3), and it yields a max and min of 𝐴!"  and 𝐴!" , 
respectively.  Every detection outside the window is counted as 
a false positive and given a scaled negative score relative to the 
preceding window. The function is designed such that 
detections slightly after the window contribute less negative 
scores than detections well after the window. Missing a 
window completely is counted as a false negative and assigned 
a score of 𝐴!".  

The raw score for a data file is the sum of the scores from 
individual detections plus the impact of missing any windows: 

𝑆!! = 𝜎!(𝑦)
!∈!!

+ 𝐴!"𝑓! (2)	

Eq. (2) accumulates the weighted score for each true positive 
and false positive, and detriments the total score with a 
weighted count of all the false negatives. The benchmark raw 

score for a given algorithm is simply the sum of the raw scores 
over all the data files in the corpus: 

𝑆! = 𝑆!!

!∈!

 (3)	

The final reported score is a normalized NAB score 
computed as follows: 

𝑆!"#! = 100 ∙
𝑆! − 𝑆!"##!

𝑆!"#$"%&! − 𝑆!"##!  (4)	

Here we scale the score based on the raw scores of a “perfect” 
detector (one that outputs all true positives and no false 
positives) and a “null” detector (one that outputs no anomaly 
detections). It follows from Eq. (4) that the maximum 
(normalized) score a detector can achieve on NAB is 100, and 
an algorithm making no detections will score 0. 

D. Other NAB Details 
NAB is most valuable as a community tool, benefitting 

researchers in academia and industry. In building NAB we 
have been collaborating with the community, and welcome 
more contributions of data and additional online anomaly 
detection algorithms. To this end, NAB is a completely open 
source code base released under the permissive MIT License 
[15]. It follows a versioning protocol and public issue tracking, 
allowing changes and dataset additions to be clearly discussed 
and communicated. We post scores from contributed 
algorithms on the NAB scoreboard [16], which reflects a 
specific NAB version number – NAB v1.0 at the time of paper 
submission.1 The codebase is modular and designed to make it 
easy to test additional algorithms (regardless of programming 
language), adjust application profiles, and even test custom 
labeled datafiles. 

III. ALGORITHMS TESTED  
It is our hope that over time the NAB scoreboard will 

reflect results from a large number of algorithms. In this paper 
we report initial NAB results using four open source and 
commercially used algorithms, plus some control detectors. 
The four primary algorithms are the Numenta HTM anomaly 
detector, Etsy Skyline, and two Twitter algorithms, 
AnomalyDetectionTs and AnomalyDetectionVec. We also use 
some simple control detectors as baselines. Each of these are 
briefly described below. 

The HTM detector (developed by Numenta and the 
authors) is based on Hierarchical Temporal Memory (HTM), a 
machine intelligence technology inspired by the structure of 
the neocortex [17, 18, 19]. Given a real-time data stream 
⋯ , 𝑥!!!, 𝑥!!!, 𝑥! , 𝑥!!!, 𝑥!!!,⋯ , the algorithm models the 
temporal sequences in that stream. At any point 𝑡 the HTM 
makes multiple predictions for 𝑥!!! . At time 𝑡 + 1  these 
predictions are compared with the actual values to determine 
an instantaneous anomaly score between 0 and 1. If any of the 
predictions are significantly different from 𝑥!!! the anomaly 
score will be 1. Conversely, if one of the predictions is exactly 
equal to 𝑥!!!  the anomaly score will be 0. The system 

                                                             
1 Contributor details can be found in the NAB wiki.  



maintains the mean and variance of the recent distribution of 
anomaly scores. At every time step it outputs the likelihood 
that the current anomaly score is from the respective normal 
distribution. The anomaly likelihood score is thresholded to 
detect the final anomaly. 

The Numenta algorithm has several features that make it 
suitable for real world streaming data. It can deal with both 
predictable and highly unpredictable data – the final score is 
the deviation from the typical level of predictability for that 
stream. The temporal model makes multiple predictions and 
can thus deal with branching temporal sequences. The 
algorithm is a continuously learning algorithm, so changes in 
the statistics of the data are automatically handled without 
additional retraining. Finally, the system is robust to parameter 
settings. Thus it is able to handle a wide range of datasets 
without manual parameter tweaking.  The code has been used 
in commercial applications and is freely available under an 
AGPL license in Python and C++ [20]. 

Skyline is a real-time anomaly detection system [7] 
originally developed by Etsy.com for monitoring its high 
traffic web site. The algorithm employs a mixture of experts 
approach. It incorporates a set of simple detectors plus a voting 
scheme to output the final anomaly score. The detectors 
include deviation from moving average, deviation from a least 
squares estimate, deviation from a histogram of past values, 
etc. Like the Numenta algorithm, Skyline is well suited for 
analyzing streaming data. The internal estimates are 
continually adjusted and, due to the mixture of simple experts, 
it is relatively robust across a wide range of applications. The 
code is open source and has been tested in commercial settings. 

Twitter recently released two versions of a real-time 
anomaly detection algorithm. It uses a combination of 
statistical techniques to robustly detect outliers. The 
Generalized ESD test [21] is combined with robust statistical 
metrics, and piecewise approximation is used to detect long 
term trends. One version of the algorithm 
AnomalyDetectionVec is intended to be more general and 
detect anomalies in data without timestamps but requires 
manually tuning of the periodicity. A second version of the 
algorithm, AnomalyDetectionTs, exploits timestamps to detect 
periodicity and can detect both short-term (intra-day) and long-
term (inter-day) anomalies. Unfortunately 
AnomalyDetectionTs was unable to calculate the necessary 
period parameters for some of the NAB data files, and thus we 
cannot include it in the Table 1 results.  It is worth noting that 
for the data files ADTs successfully ran, it was outperformed 
by ADVec. Both algorithms have been used in commercial 
settings and the R code is available as open source [22].  

In addition to the above core set of detectors we use three 
control detectors. A “null” detector outputs a constant anomaly 
score of 0.5 for all data instances. A “perfect” detector is an 
oracle that outputs detections that would maximize the NAB 
score; i.e. it outputs only true positives at the beginning of each 
window. As discussed earlier the raw NAB scores from these 
two detectors are used to scale the NAB score for all other 
algorithms between 0 and 100.  We also include a “random” 
detector that outputs a random anomaly score between 0 and 1 

for each data instance. The score from this detector offers some 
intuition for the chance-level performance on NAB. 

Each algorithm in NAB is allowed to output an anomaly 
score between 0 and 1.  The score is then thresholded using a 
fixed threshold in order to detect an anomaly. NAB includes an 
automated hill-climbing search for selecting the optimal 
threshold for each algorithm. This search efficiently optimizes 
over the range of possible thresholds, where the objective 
function to be maximized is the NAB scoring function. The 
detection threshold is thus tuned based on the full NAB dataset, 
under the constraint that a single fixed number be used for all 
data files. 

IV. RESULTS 

A. Overall NAB Scores 
Table 1 summarizes the scores for all algorithms on the 

three application profiles using the data files in NAB 1.0.  The 
HTM detector achieves the best overall scores, followed by 
Etsy and Twitter. Although the HTM detector performs 
markedly better, the Etsy and Twitter algorithms perform 
significantly better than chance across all three application 
profiles. 

TABLE I.  NAB SCOREBOARD 

Detectors 
Scores for Application Profilesa 

Standard Reward low FP Reward low FN 

1. Numenta HTM 64.7 56.5 69.3 

2. Twitter ADVec 47.1 33.6 53.5 

3. Etsy Skyline 35.7 27.1 44.5 

4. Randomb 16.8 5.8 25.9 

5. Null 0.0 0.0 0.0 
a. Each algorithms’ parameters were optimized to yield the best NAB scores possible. 

b. Random detections do not yield scores ≈ 0 because of the NAB score optimization step. 

B. Results Analysis 
A detailed analysis of the errors illustrates the primary 

strengths and weaknesses of each algorithm. Notice all 
algorithms dropped in score from the Standard to Reward low 
FP profiles, but why does the Skyline score decrease more than 
the others? For the NAB corpus of 365,558 data instances, 
Skyline detects 1161 as anomalous, whereas HTM and ADVec 
detect 387 and 612, respectively.1 An algorithm that makes 
many detections is more likely to result in more FPs than one 
with fewer. Similarly, this algorithm would result in fewer 
FNs, as reflected in the Reward low FN results, where Skyline 
increased the most of the tested algorithms. 

Investigating individual results files illustrates some of the 
interesting situations that arise in real time applications and 
how different detectors behave. Fig. 4 demonstrates the value 
of continuous learning. This file shows CPU usage on a 
production server over time and contains two anomalies. The 

                                                             
1 To maximize the ADVec scores we tuned the “max_anom” and “period” 
parameters. The former was set to flag a maximum of 0.20% of the data 
instances in a given file as anomalous. The latter set the period length to 150 
data instances (used during seasonal decomposition). 



first is a simple spike detected by all algorithms. The second is 
a sustained shift in the usage. Skyline and HTM both detect the 
change but then adapt to the new normal (with Skyline 
adapting quickest). Twitter ADVec however continues to 
generate anomalies for several days.  

 
Fig. 4. Detection results for anomalies on a production server based on CPU 
usage. The shapes correspond to different detectors: HTM, Skyline, and 
ADVec are diamond, square, and plus respectively. For a given detector, the 
scored (i.e. the first) TP detection within each window is labeled in black. All 
FP detections are colored red. As in Fig. 2, the red shaded regions denote the 
anomaly windows. 

Figs. 5 and 6 demonstrate temporal anomalies and their 
importance in early detection. Fig. 5 shows a close up of the 
results for the previously discussed machine temperature 
sensor data file. The first anomaly shown in this plot is a 
somewhat subtle temporal anomaly where the temporal 
behavior is unusual but individual readings are within the 
expected range. This anomaly (which preceded the catastrophic 
failure on February 8) is only detected by HTM.  All three 
detectors detect the second anomaly, although Skyline and 
HTM detect it earlier than ADVec. In this plot HTM and 
Skyline also each have a false positive. Fig. 6 is another 
example demonstrating early detection. All three detectors 
detect the anomaly but HTM detects it three hours earlier due 
to a subtle shift in metric dynamics.  

 
Fig. 5. A close up of the detection results for the machine temperature data 
of Figs. 1 (bottom) and 2.  Only the HTM (diamond) detects the first anomaly 
(a purely temporal anomaly). All algorithms detect the second anomaly, HTM 
and Skyline hours before ADVec. HTM and Skyline (diamond) each show an 
FP. 

 
Fig. 6. Detection results demonstrating early detection.  Although all 
detectors correctly identify the anomaly, the HTM (diamond) detects it three 
hours earlier than Skyline and ADVec due to a change in the metric dynamics.  

Both figures illustrate a very common situation that occurs 
in practice. As demonstrated by the NAB data files, temporal 
changes in behavior often precede a large easily detectable 
shift. Temporal and sequence based anomaly detection 
techniques can thus detect anomalies in streaming data before 
they are easily visible. This provides hope that such algorithms 
can be used in production to provide early warning and help 
avoid catastrophes far more reliably than traditional 
techniques. 

V. CONCLUSION AND FUTURE WORK 
The aim of NAB is to provide the anomaly detection 

research community with a controlled and repeatable 
environment of tools to test and measure different algorithms 
for real-time streaming applications. The contributions of this 
work are threefold: 

I. Benchmark dataset: real world time-series data files 
from a variety of domains, labeled with anomalies. 
Easily accessible real data for streaming applications is 
rare, and its value for algorithm practitioners is 
significant.  In this paper we have noted some of the 
insights such as the presence of subtle changes in 
dynamics preceding large-scale failures. 

II. Performance evaluation: a scoring philosophy designed 
for real time applications. The scoring system in NAB 
augments traditional metrics by incorporating time, 
explicitly rewarding early detection. The addition of 
easily tuned application profiles allows developers to 
explicitly test algorithms for their specific application 
requirements. 

III. Code library: fully open source repository complete 
with data, algorithms, and documentation. 

We discussed the NAB components and methods, and 
presented evaluation results for several open source detection 
algorithms. Although the HTM algorithm outperforms the 
other tested anomaly detectors, the results show there is still 
room for improvement. Investigating the results has allowed us 
to pinpoint the strengths and shortcomings of all algorithms. 

We have found NAB to be a comprehensive, robust 
evaluation tool for real-world anomaly detection algorithms. 



NAB v1.0 is ready for researchers to evalute their algorithms 
and report their results. To move beyond NAB v1.0, future 
work on NAB will involve adding more real-world data files to 
the corpus. We also anticipate incorporating multivariate 
anomaly detection and categorical data. Over time we hope 
researchers can use NAB to test and develop a large number of 
anomaly detection algorithms for the specific purpose of 
applying them to real time streaming applications. 
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