

Evaluating Real-time Anomaly Detection

Algorithms – the Numenta Anomaly Benchmark

Alexander Lavin

Numenta, Inc. Redwood City, CA
alavin@numenta.com

Subutai Ahmad
Numenta, Inc. Redwood City, CA

sahmad@numenta.com

October 9, 2015

We appreciate and encourage any comments on the contents of this paper. The GitHub URL
for NAB is https://github.com/numenta/NAB. The repository contains all the code, data, and
detailed results reported in this paper. You can submit issues or pull requests there, or contact
us at the above email addresses.

Note: This is a draft preprint of a paper to be published in ICMLA 2015, December 9-11,
Miami, Florida. The final paper may be slightly different from this version. Please use the
following citation for this paper:

A. Lavin and S. Ahmad, “Evaluating Real-time Anomaly Detection Algorithms – the
Numenta Anomaly Benchmark,” in 14th International Conference on Machine
Learning and Applications (IEEE ICMLA’15), 2015.

Evaluating Real-time Anomaly Detection
Algorithms – the Numenta Anomaly Benchmark

Alexander Lavin
Numenta, Inc. Redwood City, CA

alavin@numenta.com

Subutai Ahmad
Numenta, Inc. Redwood City, CA

sahmad@numenta.com

Abstract

Much of the world’s data is streaming, time-series data, where
anomalies give significant information in critical situations;
examples abound in domains such as finance, IT, security, medical,
and energy. Yet detecting anomalies in streaming data is a difficult
task, requiring detectors to process data in real-time, not batches, and
learn while simultaneously making predictions. There are no
benchmarks to adequately test and score the efficacy of real-time
anomaly detectors. Here we propose the Numenta Anomaly
Benchmark (NAB), which attempts to provide a controlled and
repeatable environment of open-source tools to test and measure
anomaly detection algorithms on streaming data. The perfect detector
would detect all anomalies as soon as possible, trigger no false
alarms, work with real-world time-series data across a variety of
domains, and automatically adapt to changing statistics. Rewarding
these characteristics is formalized in NAB, using a scoring algorithm
designed for streaming data. NAB evaluates detectors on a
benchmark dataset with labeled, real-world time-series data. We
present these components, and give results and analyses for several
open source, commercially-used algorithms. The goal for NAB is to
provide a standard, open source framework with which the research
community can compare and evaluate different algorithms for
detecting anomalies in streaming data.

Keywords—anomaly detection; time-series data; benchmarks;
streaming data

I. INTRODUCTION
With the rapid rise in real-time data sources the detection of

anomalies in streaming data is becoming increasingly
important. Use cases such as preventative maintenance, fraud
prevention, fault detection, and monitoring can be found
throughout numerous industries such as finance, IT, security,
medical, energy, e-commerce, and social media. Anomaly
detection is notoriously difficult to benchmark and compare [1,
2]. In addition, real-time applications impose their own unique
constraints and challenges that must be considered. The goal
of this paper is to introduce the Numenta Anomaly Benchmark
(NAB), a rigorous new benchmark and source code for
evaluating real-time anomaly detection algorithms.

Anomaly detection in real-world streaming applications is
challenging. The detector must process data and output a
decision in real-time, rather than making many passes through
batches of files. In most scenarios the number of sensor
streams is large and there is little opportunity for human, let
alone expert, intervention. As such, operating in an
unsupervised, automated fashion (e.g. without manual
parameter tweaking) is often a necessity. As part of this

automation, the detectors should continue to learn and adapt to
changing statistics while simultaneously making predictions.
The real goal is often prevention, rather than detection, so it is
desirable to detect anomalies as early as possible, giving
actionable information ideally well before a catastophic failure.

Benchmarks designed for static datasets do not adequately
capture the requirements of real-time applications. For
example, scoring with standard classification metrics such as
precision and recall do not suffice because they fail to reflect
the value of early detection. An artificial separation into
training and test sets does not properly capture a streaming
scenario nor does it properly evaluate a continuously learning
algorithm. The NAB methodology and scoring rules (described
below) are designed with such criteria in mind. Through
experience with customers and researchers we also discovered
it would be beneficial for the industry to include real-world
labeled data from multiple domains. Such data is rare and
valuable, and NAB attempts to incorporate such a dataset as
part of the benchmark. There exist two other time-series data
corpuses intended for real-time anomaly detection: the UC-
Irvine dataset [3] and a recently released dataset from Yahoo
Labs [4]. Neither of these include a scoring system but their
data could eventually be incorporated into NAB.

NAB attempts to provide a controlled and repeatable
environment of tools to test and measure different anomaly
detection algorithms on streaming data. We include in this
paper an initial evaluation of four different real-time
algorithms. At Numenta we have developed an anomaly
detection algorithm based on Hierarchical Temporal Memory
(HTM). HTM is a continuous learning system derived from
theory of the neocortex [5] and is well suited for real-time
applications. The algorithm has proven useful in applications
such as monitoring server data, geospatial tracking, stock
trading metrics, and social media [6]. We also include
comparative results with open source anomaly detection
algorithms from Etsy Skyline [7], a popular open source
algorithm, and two from Twitter [8]. There are, of course,
many algorithms we have not directly tested [2, 9-14]. It is our
hope that eventually a wide assortment of algorithms will be
independently evaluated and results reported in a manner that
is objectively comparable.

In the next section we discuss the two main components of
NAB: the scoring system and dataset. We then discuss and
analyze NAB scoring results for the above algorithms.

II. NUMENTA ANOMALY BENCHMARK
NAB aims to represent the variety of anomalous data and

the associated challenges detectors face in real-world streaming
applications. We define anomalies in a data stream to be
patterns that do not conform to past patterns of behavior for the
stream. This definition encompasses both point anomalies (or
spatial anomalies) as well as temporal anomalies. For
example, a spiking point anomaly occurs when a single data
point extends well above or below the expected range.
Streaming data commonly also contains temporal anomalies,
such as a change in the frequency, sudden erratic behavior of a
metric, or other temporal deviations. Anomalies are defined
with respect to past behavior. This means a new behavior can
be anomalous at first but ceases to be anomalous if it persists;
i.e. a new normal pattern is established. Fig. 1 shows a few
representative anomalies taken from the NAB dataset.

In the next two sections we discuss both the NAB dataset
and scoring system, and the qualities that make them ideal for
evaluating real-world anomaly detection algorithms.

A. Benchmark Dataset
In the current version of NAB we focus on time-series data

where each row contains a time stamp plus a single scalar
value. The requirements are then to (i) include all types of
streaming data anomalies, (ii) include a variety of data metrics,
and (iii) present common challenges such as noise and
establishing new normal patterns.

Anomalous patterns differ significantly across applications.
A one-second latency in periodic EKG data could be a
significant fluctuation, but the same pattern in stock trading
volume may be meaningless. It is thus important for the NAB
dataset to include metrics across a variety of domains and
applications. The data currently in the NAB corpus represents
a variety of metrics ranging from IT metrics such as network
utilization to sensors on industrial machines to social media
chatter. We also include some artificially-generated data files
that test anomalous behaviors not yet represented in the
corpus’s real data, as well as several data files without any
anomalies. The current NAB dataset contains 58 data files,
each with 1000-22,000 data instances, for a total of 365,551
data points.

The NAB dataset is labeled by hand, following a
meticulous, documented procedure. Labelers must adhere to a
set of rules when inspecting data files for anomalies, and a
label-combining algorithm formalizes agreement into ground
truth labels. The process is designed to mitigate human error as
much as possible. 1 In addition a smooth scoring function
(described below) ensures that small labeling errors will not
cause large changes in reported scores.

It is often prohibitively expensive to collect an accurately
labeled set of anomalous data instances that covers all types of
anomalous behavior [2]. A key element of the NAB dataset is
the inclusion of real-world data with anomalies for which we
know the causes. We propose the NAB dataset as a quality
collection of time-series data with labeled anomalies, and that

1 The full labeling process and rules can be found in the NAB wiki, along
with the label-combining source code, in the NAB repo [15].

it is well suited to be a standard benchmark for streaming
applications.

Fig. 1. Two representative examples of real data streams from the NAB
dataset. Anomalies are labeled with red circles. The first anomaly in the top
figure is subtle and challenging. The spiking behavior does not return to the
baseline as expected, and this is soon the new normal pattern. The second
anomaly is a simple spike anomaly after which the system returns to previous
patterns. The third anomaly identifies a long period inconcsitent with the
normal spiking pattern. The bottom figure shows temperature sensor data
from an internal component of a large, expensive, industrial machine. The
first anomaly was a planned shutdown. The third anomaly is a catastrophic
system failure. The second anomaly, a subtle but observable change in the
behavior, indicated the actual onset of the problem that led to the eventual
system failure.

B. Scoring Real-Time Anomaly Detectors
In NAB an anomaly detector accepts data input and outputs

instances which it deems to be anomalous. The NAB scoring
system formalizes a set of rules to determine the overall quality
of anomaly detection. We define the requirements of the ideal,
real-world anomaly detector as follows:

i. detects all anomalies present in the streaming data
ii. detects anomalies as soon as possible, ideally before

the anomaly becomes visible to a human
iii. triggers no false alarms (no false positives)
iv. works with real time data (no look ahead)

v. is fully automated across all datasets (any data
specific parameter tuning must be done online without human
intervention)

The NAB scoring algorithm aims to reward these
characteristics. There are three key aspects of scoring in NAB:
anomaly windows, the scoring function, and application
profiles. These are described in more detail below.

Traditional scoring methods, such as precision and recall,
don’t suffice because they don’t effectively test anomaly
detection algorithms for real-time use. For example, they do
not incorporate time and do not reward early detection.
Therefore, the standard classification metrics – true positive
(TP), false positive (FP), true negative (TN), and false negative
(FN) are not applicable for evaluating algorithms for the above
requirements.

Fig. 2. Shaded red regions represent the anomaly windows for this data file.
The shaded purple region is the first 15% of the data file, representing the
probationary period. During this period the detector is allowed to learn the
data patterns without being tested.

To promote early detection NAB defines anomaly
windows. Each window represents a range of data points that is
centered around a ground truth anomaly label. Fig. 2 shows an
example using the data from Fig 1. A scoring function
(described in more detail below) uses these windows to
identify and weight true positives, false positives, and false
negatives. If there are multiple detections within a window, the
earliest detection is given credit and counted as a true positive.
Additional positive detections within the window are ignored.
The sigmoidal scoring function gives higher positive scores to
true positive detections earlier in a window and negative scores
to detections outside the window (i.e. the false positives).
These properties are illustrated in Fig. 3 with an example.

How large should the windows be? The earlier a detector
can reliably identify anomalies the better, implying these
windows should be as large as possible. The tradeoff with
extremely large windows is that random or unreliable
detections would be regularly reinforced. Using the underlying
assumption that true anomalies are rare, we define anomaly
window length to be 10% the length of a data file, divided by
the number of anomalies in the given file. This technique
allows us to provide a generous window for early detections
and also allow the detector to get partial credit if detections are

soon after the ground truth anomaly. 10% is a convenient
number but note the exact number is not critical. We tested a
range of window sizes (between 5% and 20%) and found that,
partly due to the scaled scoring function, the end score was not
sensitive to this percentage.

Different applications may place different emphases as to
the relative importance of true positives vs. false negatives and
false positives. For example, the graph in Fig. 2 represents an
expensive industrial machine that one may find in a
manufacturing plant. A false negative leading to machine
failure in a factory can lead to production outages and be
extremely expensive. A false positive on the other hand might
require a technician to inspect the data more closely. As such
the cost of a false negative is far higher than the cost of a false
positive. Alternatively, an application monitoring the statuses
of individual servers in a datacenter might be sensitive to the
number of false positives and be fine with the occasional
missed anomaly since most server clusters are relatively fault
tolerant.

To gauge how algorithms operate within these different
application scenarios, NAB introduces the notion of
application profiles. For TPs, FPs, FNs, and TNs, NAB applies
different relative weights associated with each profile to obtain
a separate score per profile.

Fig. 3. Scoring example for a sample anomaly window, where the values
represent the scaled sigmoid function, the second term in Eq. (1). The first
point is an FP preceding the anomaly window (red dashed lines) and
contributes -1.0 to the score. Within the window we see two detections, and
only count the earliest TP for the score. There are two FPs after the window.
The first is less detrimental because it is close to the window, and the second
yields -1.0 because it’s too far after the window to be associated with the true
anomaly. TNs make no score contributions. The scaled sigmoid values are
multiplied by the relevant application profile weight, as shown in Eq. (1), the
NAB score for this example would calculate as: −1.0𝐴!" + 0.9999𝐴!" −
0.8093𝐴!" − 1.0𝐴!" . With the standard application profile this would result
in a total score of 0.6909.

NAB includes three different application profiles: standard,
reward low FPs, and reward low FNs. The standard profile
assigns TPs, FPs, and FNs with relative weights (tied to the
window size) such that random detections made 10% of the

time would get a zero final score on average. The latter two
profiles accredit greater penalties for FPs and FNs,
respectively. These two profiles are somewhat arbitrary but
designed to be illustrative of algorithm behavior. The NAB
codebase itself is designed such that the user can easily tweak
the relative weights and re-score all algorithms. The
application profiles thus help evaluate the sensitivity of
detectors to specific applications criteria.

The combination of anomaly windows, a smooth temporal
scoring function (details in the next section), and the
introduction of application profiles allows researchers to
evaluate online anomaly detector implementations against the
requirements of the ideal detector. Specifically the overall
NAB scoring system evaluates real-time performance, prefers
earlier detection of anomalies, penalizes “spam” (i.e. FPs), and
provides realistic costs for the standard classification
evaluation metrics TP, FP, TN, and FN.

C. Computing NAB Score: Details
The final NAB score for a given algorithm and a given

application profile is computed as follows. Let 𝐴 be the
application profile under consideration, with
𝐴!" ,𝐴!" ,𝐴!" ,𝐴!" the corresponding weights for true
positives, false positives, etc. These weights are bounded
0 ≤ 𝐴!" ,𝐴!" ≤ 1 and −1 ≤ 𝐴!" ,𝐴!" ≤ 0. Let 𝐷 be the set
of data files and let 𝑌! be the set of data instances detected as
anomalies for datafile 𝑑 . (As discussed earlier, we remove
redundant detections: if an algorithm produces multiple
detections within the anomaly window, we retain only the
earliest one.) The number of windows with zero detections in
this data file is the number of false negatives, represented by
𝑓!.

The following scaled sigmoidal scoring function defines
the weight of individual detections given an anomaly window
and the relative position of each detection:

𝜎! 𝑦 = 𝐴!" − 𝐴!"
1

1 + 𝑒!!
− 1 (1)	

In Eq. (1), 𝑦 is the relative position of the detection within the
anomaly window. The parameters of Eq. (1) are set such that
the right end of the window evaluates to 𝜎 𝑦 = 0.0 = 0 (see
Fig. 3), and it yields a max and min of 𝐴!" and 𝐴!" ,
respectively. Every detection outside the window is counted as
a false positive and given a scaled negative score relative to the
preceding window. The function is designed such that
detections slightly after the window contribute less negative
scores than detections well after the window. Missing a
window completely is counted as a false negative and assigned
a score of 𝐴!".

The raw score for a data file is the sum of the scores from
individual detections plus the impact of missing any windows:

𝑆!! = 𝜎!(𝑦)
!∈!!

+ 𝐴!"𝑓! (2)	

Eq. (2) accumulates the weighted score for each true positive
and false positive, and detriments the total score with a
weighted count of all the false negatives. The benchmark raw

score for a given algorithm is simply the sum of the raw scores
over all the data files in the corpus:

𝑆! = 𝑆!!

!∈!

 (3)	

The final reported score is a normalized NAB score
computed as follows:

𝑆!"#! = 100 ∙
𝑆! − 𝑆!"##!

𝑆!"#$"%&! − 𝑆!"##! (4)	

Here we scale the score based on the raw scores of a “perfect”
detector (one that outputs all true positives and no false
positives) and a “null” detector (one that outputs no anomaly
detections). It follows from Eq. (4) that the maximum
(normalized) score a detector can achieve on NAB is 100, and
an algorithm making no detections will score 0.

D. Other NAB Details
NAB is most valuable as a community tool, benefitting

researchers in academia and industry. In building NAB we
have been collaborating with the community, and welcome
more contributions of data and additional online anomaly
detection algorithms. To this end, NAB is a completely open
source code base released under the permissive MIT License
[15]. It follows a versioning protocol and public issue tracking,
allowing changes and dataset additions to be clearly discussed
and communicated. We post scores from contributed
algorithms on the NAB scoreboard [16], which reflects a
specific NAB version number – NAB v1.0 at the time of paper
submission.1 The codebase is modular and designed to make it
easy to test additional algorithms (regardless of programming
language), adjust application profiles, and even test custom
labeled datafiles.

III. ALGORITHMS TESTED
It is our hope that over time the NAB scoreboard will

reflect results from a large number of algorithms. In this paper
we report initial NAB results using four open source and
commercially used algorithms, plus some control detectors.
The four primary algorithms are the Numenta HTM anomaly
detector, Etsy Skyline, and two Twitter algorithms,
AnomalyDetectionTs and AnomalyDetectionVec. We also use
some simple control detectors as baselines. Each of these are
briefly described below.

The HTM detector (developed by Numenta and the
authors) is based on Hierarchical Temporal Memory (HTM), a
machine intelligence technology inspired by the structure of
the neocortex [17, 18, 19]. Given a real-time data stream
⋯ , 𝑥!!!, 𝑥!!!, 𝑥! , 𝑥!!!, 𝑥!!!,⋯ , the algorithm models the
temporal sequences in that stream. At any point 𝑡 the HTM
makes multiple predictions for 𝑥!!! . At time 𝑡 + 1 these
predictions are compared with the actual values to determine
an instantaneous anomaly score between 0 and 1. If any of the
predictions are significantly different from 𝑥!!! the anomaly
score will be 1. Conversely, if one of the predictions is exactly
equal to 𝑥!!! the anomaly score will be 0. The system

1 Contributor details can be found in the NAB wiki.

maintains the mean and variance of the recent distribution of
anomaly scores. At every time step it outputs the likelihood
that the current anomaly score is from the respective normal
distribution. The anomaly likelihood score is thresholded to
detect the final anomaly.

The Numenta algorithm has several features that make it
suitable for real world streaming data. It can deal with both
predictable and highly unpredictable data – the final score is
the deviation from the typical level of predictability for that
stream. The temporal model makes multiple predictions and
can thus deal with branching temporal sequences. The
algorithm is a continuously learning algorithm, so changes in
the statistics of the data are automatically handled without
additional retraining. Finally, the system is robust to parameter
settings. Thus it is able to handle a wide range of datasets
without manual parameter tweaking. The code has been used
in commercial applications and is freely available under an
AGPL license in Python and C++ [20].

Skyline is a real-time anomaly detection system [7]
originally developed by Etsy.com for monitoring its high
traffic web site. The algorithm employs a mixture of experts
approach. It incorporates a set of simple detectors plus a voting
scheme to output the final anomaly score. The detectors
include deviation from moving average, deviation from a least
squares estimate, deviation from a histogram of past values,
etc. Like the Numenta algorithm, Skyline is well suited for
analyzing streaming data. The internal estimates are
continually adjusted and, due to the mixture of simple experts,
it is relatively robust across a wide range of applications. The
code is open source and has been tested in commercial settings.

Twitter recently released two versions of a real-time
anomaly detection algorithm. It uses a combination of
statistical techniques to robustly detect outliers. The
Generalized ESD test [21] is combined with robust statistical
metrics, and piecewise approximation is used to detect long
term trends. One version of the algorithm
AnomalyDetectionVec is intended to be more general and
detect anomalies in data without timestamps but requires
manually tuning of the periodicity. A second version of the
algorithm, AnomalyDetectionTs, exploits timestamps to detect
periodicity and can detect both short-term (intra-day) and long-
term (inter-day) anomalies. Unfortunately
AnomalyDetectionTs was unable to calculate the necessary
period parameters for some of the NAB data files, and thus we
cannot include it in the Table 1 results. It is worth noting that
for the data files ADTs successfully ran, it was outperformed
by ADVec. Both algorithms have been used in commercial
settings and the R code is available as open source [22].

In addition to the above core set of detectors we use three
control detectors. A “null” detector outputs a constant anomaly
score of 0.5 for all data instances. A “perfect” detector is an
oracle that outputs detections that would maximize the NAB
score; i.e. it outputs only true positives at the beginning of each
window. As discussed earlier the raw NAB scores from these
two detectors are used to scale the NAB score for all other
algorithms between 0 and 100. We also include a “random”
detector that outputs a random anomaly score between 0 and 1

for each data instance. The score from this detector offers some
intuition for the chance-level performance on NAB.

Each algorithm in NAB is allowed to output an anomaly
score between 0 and 1. The score is then thresholded using a
fixed threshold in order to detect an anomaly. NAB includes an
automated hill-climbing search for selecting the optimal
threshold for each algorithm. This search efficiently optimizes
over the range of possible thresholds, where the objective
function to be maximized is the NAB scoring function. The
detection threshold is thus tuned based on the full NAB dataset,
under the constraint that a single fixed number be used for all
data files.

IV. RESULTS

A. Overall NAB Scores
Table 1 summarizes the scores for all algorithms on the

three application profiles using the data files in NAB 1.0. The
HTM detector achieves the best overall scores, followed by
Etsy and Twitter. Although the HTM detector performs
markedly better, the Etsy and Twitter algorithms perform
significantly better than chance across all three application
profiles.

TABLE I. NAB SCOREBOARD

Detectors
Scores for Application Profilesa

Standard Reward low FP Reward low FN

1. Numenta HTM 64.7 56.5 69.3

2. Twitter ADVec 47.1 33.6 53.5

3. Etsy Skyline 35.7 27.1 44.5

4. Randomb 16.8 5.8 25.9

5. Null 0.0 0.0 0.0
a. Each algorithms’ parameters were optimized to yield the best NAB scores possible.

b. Random detections do not yield scores ≈ 0 because of the NAB score optimization step.

B. Results Analysis
A detailed analysis of the errors illustrates the primary

strengths and weaknesses of each algorithm. Notice all
algorithms dropped in score from the Standard to Reward low
FP profiles, but why does the Skyline score decrease more than
the others? For the NAB corpus of 365,558 data instances,
Skyline detects 1161 as anomalous, whereas HTM and ADVec
detect 387 and 612, respectively.1 An algorithm that makes
many detections is more likely to result in more FPs than one
with fewer. Similarly, this algorithm would result in fewer
FNs, as reflected in the Reward low FN results, where Skyline
increased the most of the tested algorithms.

Investigating individual results files illustrates some of the
interesting situations that arise in real time applications and
how different detectors behave. Fig. 4 demonstrates the value
of continuous learning. This file shows CPU usage on a
production server over time and contains two anomalies. The

1 To maximize the ADVec scores we tuned the “max_anom” and “period”
parameters. The former was set to flag a maximum of 0.20% of the data
instances in a given file as anomalous. The latter set the period length to 150
data instances (used during seasonal decomposition).

first is a simple spike detected by all algorithms. The second is
a sustained shift in the usage. Skyline and HTM both detect the
change but then adapt to the new normal (with Skyline
adapting quickest). Twitter ADVec however continues to
generate anomalies for several days.

Fig. 4. Detection results for anomalies on a production server based on CPU
usage. The shapes correspond to different detectors: HTM, Skyline, and
ADVec are diamond, square, and plus respectively. For a given detector, the
scored (i.e. the first) TP detection within each window is labeled in black. All
FP detections are colored red. As in Fig. 2, the red shaded regions denote the
anomaly windows.

Figs. 5 and 6 demonstrate temporal anomalies and their
importance in early detection. Fig. 5 shows a close up of the
results for the previously discussed machine temperature
sensor data file. The first anomaly shown in this plot is a
somewhat subtle temporal anomaly where the temporal
behavior is unusual but individual readings are within the
expected range. This anomaly (which preceded the catastrophic
failure on February 8) is only detected by HTM. All three
detectors detect the second anomaly, although Skyline and
HTM detect it earlier than ADVec. In this plot HTM and
Skyline also each have a false positive. Fig. 6 is another
example demonstrating early detection. All three detectors
detect the anomaly but HTM detects it three hours earlier due
to a subtle shift in metric dynamics.

Fig. 5. A close up of the detection results for the machine temperature data
of Figs. 1 (bottom) and 2. Only the HTM (diamond) detects the first anomaly
(a purely temporal anomaly). All algorithms detect the second anomaly, HTM
and Skyline hours before ADVec. HTM and Skyline (diamond) each show an
FP.

Fig. 6. Detection results demonstrating early detection. Although all
detectors correctly identify the anomaly, the HTM (diamond) detects it three
hours earlier than Skyline and ADVec due to a change in the metric dynamics.

Both figures illustrate a very common situation that occurs
in practice. As demonstrated by the NAB data files, temporal
changes in behavior often precede a large easily detectable
shift. Temporal and sequence based anomaly detection
techniques can thus detect anomalies in streaming data before
they are easily visible. This provides hope that such algorithms
can be used in production to provide early warning and help
avoid catastrophes far more reliably than traditional
techniques.

V. CONCLUSION AND FUTURE WORK
The aim of NAB is to provide the anomaly detection

research community with a controlled and repeatable
environment of tools to test and measure different algorithms
for real-time streaming applications. The contributions of this
work are threefold:

I. Benchmark dataset: real world time-series data files
from a variety of domains, labeled with anomalies.
Easily accessible real data for streaming applications is
rare, and its value for algorithm practitioners is
significant. In this paper we have noted some of the
insights such as the presence of subtle changes in
dynamics preceding large-scale failures.

II. Performance evaluation: a scoring philosophy designed
for real time applications. The scoring system in NAB
augments traditional metrics by incorporating time,
explicitly rewarding early detection. The addition of
easily tuned application profiles allows developers to
explicitly test algorithms for their specific application
requirements.

III. Code library: fully open source repository complete
with data, algorithms, and documentation.

We discussed the NAB components and methods, and
presented evaluation results for several open source detection
algorithms. Although the HTM algorithm outperforms the
other tested anomaly detectors, the results show there is still
room for improvement. Investigating the results has allowed us
to pinpoint the strengths and shortcomings of all algorithms.

We have found NAB to be a comprehensive, robust
evaluation tool for real-world anomaly detection algorithms.

NAB v1.0 is ready for researchers to evalute their algorithms
and report their results. To move beyond NAB v1.0, future
work on NAB will involve adding more real-world data files to
the corpus. We also anticipate incorporating multivariate
anomaly detection and categorical data. Over time we hope
researchers can use NAB to test and develop a large number of
anomaly detection algorithms for the specific purpose of
applying them to real time streaming applications.

ACKNOWLEDGMENT
We would like to thank Jeff Hawkins, Ian Danforth,

Celeste Baranski, Jay Gokhale, and Tom Silver for their
contributions to this paper. We also thank the IEEE reviewers
for comments that helped improve overall readibility.

REFERENCES
[1] M Tavallaee, N. Stakhanova, and A. Ghorbani, “Toward

credible evaluation of anomaly-based intrusion-detection
methods,” IEEE Transactions on Systems, Man and Cybernetics
Part C: Applications and Reviews, vol. 40, no. 5, pp. 516–524,
September 2010.

[2] V. Chandola, A. Banjeree, and V. Kumar, "Anomaly Detection:
A Survey," ACM Computing Surveys (CSUR). USA, vol. 41,
issue 3, pp 1–72, September 2009.

[3] E. Keogh, J. Lin, and A. Fu, "HOT SAX: Efficiently finding the
most unusual time series subsequence," in proceedings of Fifth
IEEE International Conference on Data Mining, pp. 226-233,
November 2005.

[4] N. Laptev, A. Amizadeh, and Y. Billawala. (2015, March 25)
Yahoo Labs News: Announcing A Benchmark Dataset For Time
Series Anomaly Detection [Online blog]. Available:
http://labs.yahoo.com/news/announcing-a-benchmark-dataset-
for-time-series-anomaly-detection

[5] J. Hawkins, S. Ahmad, and D. Dubinsky. (2010) Hierarchical
temporal memory including HTM cortical learning algorithms
[Online technical report]. Palo Alto, CA: Numenta, Inc.
Available: http://numenta.org/cla-white-paper.html

[6] (2015) Numenta Applications [Online website]. Redwood City,
CA: Numenta, Inc. Available: http://numenta.com/#applications

[7] A. Stanway. (2013) etsy/skyline [Online code repository].
Available: https://github.com/etsy/skyline

[8] A. Kejariwal. (2015, January 6) Twitter Engineering:
Introducing practical and robust anomaly detection in a time
series [Online blog]. Available:
https://blog.twitter.com/2015/introducing-practical-and-robust-
anomaly-detection-in-a-time-series

[9] F. Serdio and E. Lughofer and K. Pichler and M.Pichler and T.
Buchegger and H. Efendic. (2014) “Fault Detection in
Multi­Sensor Networks based on Multivariate Time­Series
Models and Orthogonal Transformations”, Information Fusion,
vol. 20, pp. 272­291

[10] N. Laptev, S. Amizadeh, and I. Flint. (2015) Generic and
Scalable Framework for Automated Time-series Anomaly
Detection. In Proceedings of the 21th ACM SIGKDD
International Conference on Knowledge Discovery and Data
Mining, pp. 1939–1947.

[11] U. Rebbapragada, P. Protopapas, C. E. Brodley, and C. Alcock.
(2009) “Finding anomalous periodic time series : An application
to catalogs of periodic variable stars,” Machine Learning, vol.
74, no. 3, pp. 281–313.

[12] V. Chandola, V. Mithal, and V. Kumar. (2008) "Comparative
evaluation of anomaly detection techniques for sequence data."
Eighth IEEE International Conference on Data Mining.

[13] D. Dasgupta, and S. Forrest. (1996) "Novelty detection in time
series data using ideas from immunology." Proceedings of the
International Conference on Intelligent Systems.

[14] J. Lin, E. Keogh, S. Lonardi, and B. Chiu. (2003) "A symbolic
representation of time series, with implications for streaming
algorithms." Proceedings of the 8th ACM SIGMOD workshop
on Research issues in data mining and knowledge discovery.
ACM.

[15] Numenta, Inc. (2015) NAB: Numenta Anomaly Benchmark
[Online code repository]. Redwood City, CA: Numenta, Inc.
Available: https://github.com/numenta/NAB

[16] A. Lavin. (2015) NAB Scoreboard [Online wiki]. Redwood
City, CA: Numenta, Inc. Available:
https://github.com/numenta/NAB/wiki/NAB%20Scoreboard

[17] J. Hawkins and S. Blakeslee, On Intelligence. New York: Henry
Holt and Company, 2004.

[18] J. Hawkins, S. Ahmad, and D. Dubinsky. (2014) The Science of
Anomaly Detection [Online technical report]. Redwood City,
CA: Numenta, Inc. Available: http://numenta.com/#technology

[19] S. Purdy. (2014, October 17) Science of Anomaly Detection
[Online video]. Redwood City, CA: Numenta, Inc. Available:
http://numenta.com/learn/science-of-anomaly-detection.html

[20] Numenta, Inc. (2015) NuPIC: Numenta Platform for Intelligent
Computing [Online code repository]. Redwood City, CA:
Numenta, Inc. Available: https://github.com/numenta/nupic

[21] B. Rosner, “Percentage points for a generalized ESD many-
outlier procedure”, Technometrics, 25(2), pp. 165-172, May
1983.

[22] A. Kejariwal. (2015) Twitter/AnomalyDetection [Online code
repository]. Available:
https://github.com/twitter/AnomalyDetection

